CASE REPORT

AV malformation of tongue treated by sclerotherapy (3% sodium tetradecyl sulfate)

Suyash Agarwal*, Nimisha Agarwal**

Abstract

Vascular anomalies constitute some of the most difficult diagnostic and therapeutic enigmas in the head and neck region. It is of paramount importance that a modern classification system is established to differentiate vascular lesions from vascular malformations. Vascular malformations are usually congenital and venous anomalies usually expand because of hormonal changes such as puberty, pregnancy, or secondary to trauma. Here, we report a case which was diagnosed as low flow vascular malformation of buccal mucosa involving the right dorsum of the tongue and subsequently treated with 3% sodium tetradecyl sulfate. This paper provides overall understanding regarding the presentation and management of small vascular lesions in the orofacial region. Percutaneous sodium tetradecyl sulfate when used either alone or as adjunct to surgery is a safe, effective, and inexpensive agent in the treatment of venous malformations. However, proper case selection, evaluation, and careful planning are necessary to reduce the unwarranted risks and complications.

Key words: Intralesional sclerotherapy, low-flow vascular malformation, vascular lesions, 3% sodium tetradecyl

Introduction

The vascular lesions of the skin are divided into congenital and acquired lesions. Acquired and congenital vascular lesions are described as follows:

Acquired vascular lesions

The most significant acquired vascular lesions of infancy are hemangiomas. The lesions are composed of proliferating blood vessels and, although benign, have a potentially destructive character. Hemangiomas undergo a proliferative and an involution stage. Pyogenic granuloma is another acquired vascular lesion that is frequently observed during childhood. It is of minor esthetic significance compared to hemangiomas. After infancy, acquired vascular lesions are associated with aging (senile angiomas), trauma
(arteriovenous fistulas), systemic conditions (spider angioma), and malignancy (Kaposi's sarcoma).

Congenital vascular lesions

The most common congenital vascular lesions are vascular malformations. Vascular malformations are the outcome of errors in vascular formation during embryonic life. They do not proliferate. The dilated blood vessels that build up these lesions gradually enlarge. Vascular malformations can be classified based on their type of blood flow into slow-flow lesions (capillary, venous, and lymphatic), high-flow lesions (arterial), and lesions with a combined slow and fast blood flow.

Case Report

A 36-year-old female patient came to Nimisha Dental & Maxillofacial Clinic as an outpatient with a chief complaint of swelling in right side of the tongue. The patient gives a history of small negligible swelling present since 3 years and gradually increased in size. Her blood report was within normal limits. Local examination revealed a single, oval, well-defined, nonpulsating, soft and compressible swelling roughly measuring $1 \times 1 \times 0.5$ cm3 (Figure 1) right side of dorsum of the tongue. Color of the lesion was bluish red with erythematous areas on the surface.

For confirmatory diagnosis, the lesion was subjected to a Ultrasound Color Doppler study. An ultrasound color Doppler scan reported with heterogeneously hypo echoic and mild internal vascularity within the lesion (Figure 2), multiple images of blood flow in colour doppler (Figure 3). There was no evidence of prominent vessel around the lesion and was diagnosed as slow-flow vascular malformation of the tongue.

The patient was planned for conservative treatment by sclerotherapy with 3% sodium tetra decyl sulfate (STS). A test dose was given and found no signs of hypersensitivity. The area to be injected was cleansed and local infiltration (2% lignocaine with 1:2,00,000 adrenaline) was administered at the base and periphery of the lesion. STS was injected directly into the lesion at multiple sites without any radiological guidelines. In total, 0.8 ml of STS was injected (Figure 4).

After withdrawal of the needle, manual compression for 10-15 min was done over the
lesion with a sterile gauze. The patient was advised to take anti-inflammatory and analgesics and recalled after 15 days. In the second visit, the patient was reviewed and again STS was repeated. Finally patient was recalled after 15 days. After 15 days the lesion was resolved (Figure 5). In our case, the patient experienced transient severe pain postoperatively. The patient was reviewed after 15 days and bimonthly interval, found the complete absence of the lesion and no evidence of recurrence. Further USG and Colour Doppler study was done to confirm the flow (Figure 6 & 7).

Discussion

The diagnosis of vascular malformations is based on the patient's medical history and a physical examination. Vascular low flow lesions may present a progressive increase with age, trauma, and after partial resection. Ectatic blood vessels and the reddish-blue surface are characteristically found in this lesion. Change on pressure is a common finding with return to original color on withdrawal of pressure. We believe that our case corresponds to vascular low flow malformation due to their reddish-purple aspect and absence of vascular pulsation.

The appropriate combination of noninvasive to minimally invasive tests should follow in order to confirm or exclude the clinical impression. Duplex ultrasound scanning is the first choice for noninvasive evaluation of patients with vascular malformations, doppler mode to assess flow characteristics, delineates feeding and draining vessels, distinguishes between different soft tissues (muscle, fat) and the vascular structures.

Sclerotherapy, the mainstay of treatment is the injection of an agent to induce inflammation and obliteration of affected veins. For small cutaneous or mucosal lesions, local injection may be effective. Intralvesional sclerotherapy using liquid sclerosing agents, which is a palliative treatment in most types of vascular anomalies, produces good outcomes in smaller lesions. Sclerosants can also be classified as

Detergents-Disrupt vein cellular membrane (protein theft denaturation)
- Sodium tetradecyl sulfate
- Polidocanol
- Sodium morrhuate
- Ethanolamine oleate

Osmotic agents-Damage the cell by shifting the water balance through cellular gradient (osmotic) dehydration and cell membrane denaturation
- Hypertonic sodium chloride solution
- Sodium chloride solution with dextrose

Chemical irritants-Damage the cell wall by direct caustic destruction of endothelium
- Chromated glycerin
- Polyiodinated iodine

STS at low concentrations are effective in stripping endothelium over a considerable distance, and is also able to induce a hypercoagulable state, possibly by selective inhibition of protein C, and can also promote platelet aggregation. We selected 3% STS as a sclerosing agent because of its high effectiveness and minor complications like the presence of small
skin ulcers and superficial skin breakdown which responded well to the application of silver sulfadiazine. Intralesional sclerotherapy can be performed without serious complications if the sclerosing agent is selected and injected cautiously.

References